

Evaluation of Water Surface
Fluctuations on Bass Nest Dewatering
and Characterization of Inundated
Littoral Habitat in the Thermalito
Afterbay

SP-F3.1 Task 4C Final Report

Need for Study/ Study Objectives

- The Oroville Facilities affect Thermalito Afterbay water surface elevation, thereby influencing:
 - Potential for black bass nest dewatering, and
 - Availability of inundated littoral habitat for black bass juvenile rearing

Introduction Study Area

- Thermalito Afterbay
 - Shallow off-channel reservoir
 - Maximum surface area4,300 acres
 - Maximum water surface elevation - 136.5 ft msl
 - Minimum observed
 water surface elevation
 124 ft msl

Introduction Operational Constraints

- Reservoir Fluctuations
 - Daily and weekly fluctuation cycles
 - Peaking and pumpback operations
 - Agricultural diversions
 - Thermalito AfterbayOutlet releases

Nest Dewatering Methodology Conceptual Approach

- Establish a nest success evaluation criterion
 - Self-sustaining black bass populations in North America experience a nest success (i.e., the nest produces swim-up fry) rate of 60 percent
- Apply the 60% nest success level to speciesspecific relationships between nest success and surface elevation fluctuations to identify species-specific "maximum" stage elevation fluctuation rates

Nest Dewatering Methodology Conceptual Approach

- Examine the frequency and duration of stage elevation fluctuations that are greater than each species' "maximum" stage elevation fluctuation rate
- Determine the percentage of nests dewatered during each day of the spawning and incubation period

 Compare the percentage of nests dewatered each day to the nest success criterion

Nest Dewatering Methodology Analytical Procedures

- Derive bass nest depth distribution
 - 5 largemouth bass nests identified during snorkel and boat surveys conducted in 2003
 - Lee (1999) presented largemouth bass, smallmouth bass, and spotted bass nest depth data collected from several California reservoirs (5 observations from afterbay were added for analysis)

Nest Dewatering Methodology Analytical Procedures

- Derive bass spawning timing and incubation duration derived from available literature
- Examine daily changes in stage elevation during spawning and incubation

Nest Dewatering Methodology Analytical Procedures

- Calculate the daily percentage of total nests that would have been dewatered in 2000, 2001, 2002, and 2003
- Compare the percentage of dewatered nests to the nest success criterion determined from the literature
 - > 40% dewatering (less than 60% survival) would not allow for a self sustaining population

Nest Dewatering Results Summary

Percentage of days with more than 40% of bass nests dewatered

YEAR	Largemouth Bass	Smallmouth Bass	Spotted Bass
2000	55.7	52.7	0
2001	49.2	44.0	0
2002	33.6	30.8	0
2003	12.3	16.5	0
Average	37.7	36.0	0

Littoral Habitat Availability Introduction

- Benefits of inundated littoral habitat to bass populations
 - Juveniles can escape predation
 - Aquatic invertebrate production increases, providing an increase in small prey items
 - Black bass recruitment to age-1 has been linked with littoral habitat availability (Aggus and Elliott 1975; Miranda and Pugh 1997)

Littoral Habitat Availability Methodology

- Utilize vegetation maps from SP-T4, Biodiversity,
 Vegetation Communities, and Wildlife Habitat Mapping
 - SP-T4 and personal communications with DWR staff suggest that, in the Thermalito Afterbay, aquatic emergent vegetation occurs at stage elevations ≥ 127 ft msl
 - Thus, stage elevations ≥ 127 ft msl provide littoral habitat to rearing bass
- Habitat mapping occurred in 2001, thus only the 2001 rearing period was analyzed
- Calculate the percentage of time during the initial rearing period (April through November) that the mean daily stage elevation in the Thermalito Afterbay is ≥ 127 ft msl

Littoral Habitat Availability Results

SP-F3.1 Task 4C Final Report Conclusions

Bass Nest Dewatering

- The 60% nest survival criterion was not met during a relatively large portion of the spawning and incubation period for largemouth bass and smallmouth bass nests
- The 60% nest survival criterion was met during the spawning and incubation period for all years analyzed for spotted bass
- Littoral Habitat Availability
 - Black bass juvenile rearing habitat was available for the majority of the rearing period